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Techniques derived from bifurcation theory are used to study the porous-medium 
analogue of the classical Rayleigh-Be'nard problem, Lapwood convection in a two- 
dimensional saturated porous cavity heated from below. The objective of the study 
is the explanation of how the multiplicity of solutions observed for lower boundary 
heating evolves to an apparently unique solution for sidewall heating. The change in 
boundary conditions from floor to sidewall heating can be effected by smoothly 
tilting the cavity through 90'. The present study aims to demonstrate the 
mechanisms that reduce the multiplicity for increasing tilt angle. 

The many solutions in the untilted cavity arise from a complex bifurcation 
structure. The effect of tilting the cavity is to unfold all bifurcations, except those 
that break the centro-symmetry, and so to create branches disconnected from the 
primary flow. As the angle of tilt, 4, increases most of the limit points at which these 
branches arise move to higher Rayleigh number Ra. Unexpectedly, for a square 
cavity, the critical Rayleigh number of the most important limit point (that gives 
rise to an anomalous stable unicellular flow) is found to be almost independent of the 
angle of tilt. Moreover the two branches arising at this limit point merge again at 
higher Rayleigh number to form a continuous closed loop, or isola. As the tilt 
increases, the upper limit point approaches the lower one until they coalesce at  an 
isola formation point at  a critical angle 4c of 10.72', the maximum angle at which 
this anomalous mode can exist. Symmetry-breaking bifurcations destabilize part of 
the branch and determine a smaller critical angle of 10.23', the maximum angle for 
which the anomalous mode is stable. At very small angles of tilt, the path of limit 
points forms the expected cusp catastrophe in the (#,Ra)-plane and at larger angles 
the path itself turns back at the isola formation point. 

The results reveal as too simplistic the conjecture that the reduction of multiplicity 
for increasing tilt derives from the movement of disconnected branches to 
increasingly higher Rayleigh number. The predicted collapse and disappearance of 
branches at  an isola formation point is a further novel mechanism which ensures that 
only the unicellular primary branch remains a t  a tilt of 90°, in accord with the 
expected uniqueness of the flow in a square cavity with sidewall heating. 

1. Introduction 
Convective flows in porous media are of interest in many varied practical 

situations : in radioactive waste disposal, geothermal energy resource and oil- 
reservoir modelling, in mass transfer through snow layers and the genesis of 
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avalanches, in open-pore insulation systems and in gas flows through tobacco rods, 
to name but a few. These sorts of applications, together with the fact that porous- 
media flows are of fundamental scientific interest, have motivated a rapidly 
increasing number of investigations in the last decade. A recent survey of the 
literature on free-convective flows in porous media may be found in the excellent 
review by Bories (1985). 

The present study is concerned with the bifurcation structure associated with 
steady free convection in a finite two-dimensional saturated porous cavity heated 
from below. The aim of the study is to investigate by numerical techniques the 
unfolding of the bifurcations as the cavity is tilted. An important aspect that we 
address is the way in which the multiplicity of solutions found for lower boundary 
heating reduces to leave a unique solution for sidewall heating. 

Beck (1972) seems to have been the first to consider convection in a finite three- 
dimensional horizontal box of porous material saturated with fluid and heated from 
below. Using linear stability analysis, he found the critical Rayleigh number for the 
onset of convection in a box of aspect ratios h,, h, (ratio of horizontal dimensions to 
vertical height). I n  the present two-dimensional study we are effectively restricting 
ourselves to thin two-dimensional boxes with length equal to the height (h, = 1, 
h, 4 1). In most practical situations, the flow would probably be three-dimensional, 
and indeed the majority of experimental work is concerned with such flow. It is 
worth stressing, however, that two-dimensional flows do exist both in nature and in 
the laboratory. Furthermore, the understanding gleaned from two-dimensional 
studies is essential in facilitating progress in the analysis of the fully three- 
dimensional situation. 

Extensive experimental work on the inclined box has been carried out by Bories 
and his coworkers: see Bories & Monferran (1972), Bories & Combarnous (1973), 
Bories, Combarnous & Jaffrennou (1972), Jaffrennou & Bories (1974) and also 
Hollard (1984). The cell used in this work was of large lateral extension, h, = 9 and 
h, = 13, approximately, where h, is the aspect ratio associated with the length along 
the slope. The results are summarized in figure 1 : when the Rayleigh number is small 
there is a weak unicellular flow whatever the angle of inclination $. When Ra cos $ 
> 47c2 and the inclination is between 0" and 15O, polyhedral cells with a vertical axis 
are observed. For $ varying between 15" and $*, where Ra cos $* = 4x2, longitudinal 
rolls with axes along the line of greatest slope are superimposed onto the basic 
unicellular flow, resulting in a helicoidal motion. A single unicellular flow is 
maintained, even for angles greater than go", when $ > $*. An unsteady oscillating 
flow, characterized by longitudinal rolls oscillating about their axis, is obtained when 
the layer is inclined and the Racos# product is greater than about 250. For larger 
values of the Rayleigh number there exists fluctuating multicellular flow with 
continuous creation and disappearance of convective cells, similar to the regime 
found by Caltagirone, Cloupeau & Combarnous (1971). Kaneko (1972) observed 
motion consisting of transverse rolls ; Jaffrennou & Bories (1974) found similar 
results and also determined, for a layer of finite extension, the transition conditions 
between unicellular flow and helicoidal flow. Kaneka, Mohtadi & Aziz (1974), using 
a cell 18 x 6 x 3 inches high, found that the vigour of the motion, which consisted 
of transverse rolls, was maximized a t  a tilt angle of about 10". For angles greater 
than about 20°, unicellular flow was approached. 

Vlasuk (1972) determined numerically the variation of the global heat transfer 
with tilt angle, and found that the Nusselt number is maximized a t  an angle of about 
50" for Rayleigh numbers in the range 100 to 350. This was also found by Holst & 
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FIGURE 1.  The different experimentally determined types of flow in an inclined cell of large lateral 
extension (after Bories et al. 1972). A :  unicellular flow; B :  polyhedric cells; C :  helicoidal 
cells ; D : unsteady regime ; E : oscillating helicoidal cells. 

Aziz (1972), who investigated a square cavity saturated by a fluid with 
temperature-dependent properties. Weber (1975) demonstrated that, in a layer of 
infinite extension, longitudinal rolls constitute the preferred mode of disturbance. 
Walch & Dulieu (1979, 1982) analysed convection in slightly inclined two- 
dimensional cavities and showed that anomalous modes exist for inclinations less 
than 7". Chan, Ivey & Barry (1970), Walch (1980) and Caltagirone & Bories (1980) 
studied the existence of, and transitions between, different flow configurations by 
means of two- and three-dimensional numerical simulations using spectral and 
finite-difference methods. 

Using analytical and numerical (spectral) methods, Caltagirone & Bories (1985) 
determined two- and three-dimensional solutions for the inclined box and examined 
their stability. Their results, which are summarized in figure 2, confirmed previously 
known results for layers of large lateral extent : the existence of three major regimes 
and the condition for transition from unicellular flow. In  addition the study 
determined : (i) the existence of a transition angle g5t characterizing the change from 
polyhedric cells to longitudinal coils. The theoretical value was found to be 31" 48' 
which differed markedly from the experimental estimates of g5exp - 15"; (ii) the 
critical nature in which initial conditions affected the selection of the mode, when 4 
is less than q5t. It should be emphasized that three-dimensional flows occur naturally 
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FIGURE 2. The different theoretically determined types of flow in an inclined cell of square 
cross-section and infinite depth (after Caltagirone & Bories 1985). 

in cells of large lateral extent, where such disturbances are easily accommodated. If, 
however, the third dimension is small the flow may well remain two-dimensional. 
Thus two-dimensional studies are of real importance. 

Recently Riley & Winters (1987, 1989) and Moya, Ramos & Sen (1987) have 
carried out numerical studies of the two-dimensional problem. In the latter work, the 
authors found steady solutions to the governing equations using a finite-difference 
approximation. Their approach was rather limited in that they used a false-transient 
explicit method to solve the energy equation, and they found only stable solutions. 
Consequently the bifurcation picture was incomplete and the structure was neither 
fully determined nor interpreted. Moreover steady solutions proved difficult to 
obtain using the time-dependent formulation when the parameters lay near stability 
boundaries (see Sen, Vasseur & Robillard 1987) because the transients in the problem 
decayed very slowly. 

The numerical techniques which we adopt in the present study originate in 
bifurcation theory. The basic idea is to extend the set of governing equations with 
conditions that axe satisfied at the bifurcation point which is to be located. Partial 
differential equations can readily be treated by combining this extended-systems 
approach with the finite-element approximation. The approach has been used with 
considerable success in a number of related studies, some of which are summarized 
by Winters, Cliffe & Jackson (1984, 1987). We note that it is natural in the finite- 
element method to use a direct solver and this makes available the Jacobian matrix 
fx ;  this is particularly appropriate for bifurcation studies where the Jacobian can be 
used for parameter continuation (Keller 1977) and for assessing stability. 

The plan of the rest of the paper is as follows: in $2 the governing equations are 



Natural convection in a tilted two-dimensional porous cavity 313 

formulated. There is then a discussion of the symmetries that the equations possess. 
In $3 we sketch out the numerical techniques used for locating bifurcation points in 
the solutions of the equations and for parameter continuation of these solutions. In 
$4 numerical results are presented for a square cavity, first for the case of zero tilt, 
and then for non-zero tilt. Finally in $ 5  the findings are summarized. 

2. Formulation 
2.1. Problem description 

The assumptions underlying our model of the porous-medium flow are described in 
Riley & Winters (1989). We consider a two-dimensional rectangular cavity of height 
H and aspect ratio h = W / H ,  where W is the lateral dimension (width). The cavity, 
which is inclined at  an angle q5 with respect to the horizontal (see figure 3), comprises 
a solid matrix of porosity 8, permeability K and heat capacity ( P C ) ~ ,  saturated by a 
fluid with thermal expansion coefficient p, of viscosity v, heat capacity (pc), and 
density p. The saturated porous medium is taken to have an effective thermal 
conductivity k, and heat capacity (pc),, ,  where 

(2.1) 
The lateral boundaries of the cavity are adiabatic, while the ‘upper’ and ‘lower’ 

boundaries are at isothermal temperatures -iAT, T, ++AT, respectively ; AT is 
taken to be positive so that the cavity is heated from below. All boundaries are 
assumed impermeable. 

On invoking the Boussinesq approximation, and assuming that the Prandtl-Darcy 
number is large, convective flows are governed by the dimensionless equations : 

( P 4 *  = + ) I +  (1 -4 ( P C ) , .  

1 ae 
h ax 

where (2, y) are Cartesian coordinates based at  the centre of the cavity, 

t is time, and 9, 0 are stream and temperature functions, respectively. Here Ra 
denotes the Darcy-Rayleigh number defined by 

and quantities have been non-dimensionalized using lengthscales H or W (as 
appropriate), diffusive velocity scale k , /H(pc ) ,  and the temperature scale AT. 

The governing equations (2.2), (2.3) hold in the region 

S z = { ( ~ , ~ ) : - O . 5 < ~ < 0 . 5 ,  -0.5 <y<O.5},  (2.5) 
while on the boundaries we have 
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FIGURE 3. The geometry and coordinate system for the two-dimensional rectangular cavity. 

2.2. Symmetries 
When q5 = 0 it is straightforward to show that the governing system of equations 
possesses Z ,  x Z,  symmetry, where the generators of the group are S,, S ,  defined by 

The representation r of the group 2, x Z, is r" = {I,S,,Sy,S,S&, where I is the 
identity operator. Here S,, S, and S,S, represent left-right, up-down, and centro- 
symmetries respectively. 

Again in the untilted case, there exists a solution representing a pure conduction 
state, viz. 8 = -y, y9 = 0. The bifurcations from this trivial solution will have 
distinct symmetry properties depending on the number of horizontal cells m and 
vertical cells n. A bifurcation to an odd number of cells in direction i (i = x or y) 
breaks the symmetry S,, whilst if Im-nl is odd then the centro-symmetry S,S, is 
broken. 

When q5 $. 0 there is no longer a pure conducting solution. The governing system 
of equations loses the reflection symmetries 8, and S, but the centro-symmetry 
S,S, is retained. Thus those bifurcations which do not break the centro-symmetry 
are unfolded under tilt. 

It should be noted that the discussion of symmetries by Moya et al. (1987) is 
incomplete. Further, they state that if +(s, y), O(s, y) are solutions in the untilted case 
then so are - @(x, y), O( - x, y) ; presumably there is a typographical error here and 
what they are referring to is the symmetry S,. 
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3. Numerical methods 
The equations (2.2) and (2.3) are discretized in the finite-element approximation 

using a standard Galerkin formulation with the second-order terms integrated by 
parts. In the present problem we are mainly concerned with the steady-state 
solutions of the resulting equations, that is solutions x which satisfy 

f ( x ,  A, a)  = 0 (3.1) 

where f is a smooth nonlinear function, A is a bifurcation parameter, and a is a vector 
of control parameters. These nonlinear algebraic equations for the unknown values 
of stream function and temperature are linearized using a Newton-Raphson 
procedure, and the solution of the linear set of equations at each iteration is obtained 
using a direct, frontal solver. 

The details of how we locate primary bifurcations from the trivial solution; 
secondary bifurcations (symmetry-breaking or transcritical) from a non-trivial 
solution ; and limit points arising from the unfolding of either primary or secondary 
bifurcations are all described in Riley & Winters (1989). There we also outline how 
we use coninuation methods to trace out solution branches, and the loci of 
bifurcation points as control parameters are varied. In the present problem, isola 
formation and Hopf bifurcation points also feature. 

3.1, Isola formation points 
Once we have located a limit point we can obtain the variation of the critical 
bifurcation parameter Ra as one of the control parameters (h, q5) varies, to trace out 
a path of bifurcation points in the two-parameter space (Ra, h) or (Ra, 4). This path 
may itself have a turning point corresponding to an isola formation point. This 
singular point is located in an identical manner to a transcritical bifurcation. 

3.2. Hopf bifurcation points 
If a generalized eigenvalue of the Jacobian fx becomes purely imaginary, then the 
equation has a Hopf bifurcation. This gives rise to periodic solutions of angular 
frequency w at a critical value of A, although the Jacobian is not actually singular a t  
that point. 

To locate Hopf bifurcations in the steady equations we implement a technique 
proposed by Jepson (1981) and Griewank & Reddien (1983) in which the following 
extended set of equations is solved: 

The functions xR and xI are the real and imaginary parts of the right eigenvector of 
the Jacobian matrix, M is a mass matrix and the last two equations in the set are 
normalization conditions which use some linear functional 1. The solution of these 
nonlinear equations by Newton’s method gives successive approximations to x,,, xB, 
xI, A and w that converge quadratically to their values a t  the Hopf bifurcation point 
A = AH, for a good-enough initial guess. 

11 FLM 215 
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4. Computations 
All computations were carried out on a CRAY-1S and CRAY-XMP at Harwell 

using the finite-element code ENTWIFE. We first used a grid of 8 x 8  nine-noded 
elements to determine the state diagram for an untilted cavity. Grid-independence 
and accuracy checks were then carried out on the locations of the bifurcation points, 
and continuation methods used to follow these points as the angle of tilt varied. We 
did not perform exhaustive checks on the accuracy of solutions away from the 
bifurcation points. For example, in the case of an isola, the limit points were 
computed to high accuracy, but the solution branches joining these points were not 
computed to the same accuracy. Our aim in this study is to resolve the effect of tilt 
on the bifurcation structure, and so the detail of the flow at regular points lies outside 
our immediate concern. We endeavoured, however, to ensure that we did not 
introduce spurious bifurcation through using too coarse a grid. 

We note that the resolution of the nature of a singular point using either time- 
dependent finite-difference or modal methods is difficult, especially when other 
singularities lie nearby. However, the approach of Moya et al. (1987) leads to a 
surprisingly good picture of the possible flows arising from the underlying bifurcation 
structure. Two remarks concerning their work are perhaps relevant at this point. 
First, their description seems to suggest that the wider the cavity, the greater the 
number of points they take in the perpendicular direction; we presume that they 
actually refine in the parallel direction. Secondly, they remark that the determination 
of the interface between different cellular regions is difficult and very sensitive to 
external parameters. Our approach, which allows us to follow unstable solutions and 
determine bifurcation points exactly, does not suffer from this drawback. 

4,l. Lapwood convection ; untilted case 
Before presenting the results on the effect of tilt, we first reproduce the discussion of 
the results concerning an untilted square cavity from Riley & Winters (1989). The 
reasons for this are twofold : first to set the new results into a coherent context with 
consistent labelling of bifurcation points, solution branches and so on. Secondly, to 
identify the nature of the various branches and to demonstrate clearly the extent of 
their unfolding. 

Figure 4 shows the computed bifurcation structure when h = 1 and for Rayleigh 
numbers up to 350. The measure used in all computed state diagrams is the left-hand 
mid-wall temperature. In accord with standard practice, the solid and dashed lines 
indicate stable and unstable branches respectively, and bifurcation points are 
signalled by solid circles. Primary bifurcations to one-, two- and three-cell modes 
occur at  P,, P, and P,, respectively. The unicellular mode is stable from onset, while 
secondary bifurcations S2,1 and Ssl2 stabilize the two- and three-cell modes, 
respectively. In fact, the three-cell solution branches have two sets of secondary 
bifurcations at Ssl1 and SSl2. The bifurcation at  SsI1 is subspace breaking and 
transcritical, whereas that a t  SSl2, which occurs a t  a Rayleigh number of 160.25, is 
centro-symmetry breaking and pitchfork. We note that the crossing at P, of the 
branches arising at  the secondary bifurcations Sz,l is a consequence of the measure 
chosen ; there are no bifurcations on these secondary branches at this point. 

For Rayleigh numbers in excess of 160.25, stable one-, two- and three-cell modes 
coexist. In theory any of these modes may be observed, but the one-cell mode will 
be preferred and the multicellular modes will be anomalous under conditions where 
the Rayleigh number is raised by gradually increasing the applied temperature 
difference. 
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FIGURE 4. Computed bifurcation structure at unit aspect ratio. The measure used is the 
temperature at ( -0.5,O). Stable/unstable branches are denoted by full/broken curves respectively. 

For clarity we have not shown in figure 4 the primary bifurcations located a t  
Rayleigh numbers greater than 180, nor the secondary bifurcations associated with 
them, nor any tertiary bifurcations (we define a tertiary bifurcation to be a singular 
point on a branch that arises a t  a secondary bifurcation). Moreover, a primary 
bifurcation to a (2,2) mode occurs a t  Ra = 16x2 but the branch has zero measure (i.e. 
the left-hand mid-wall temperature remains zero, by symmetry) and overlays the 
abscissa. A symmetry-breaking secondary bifurcation from this (2,2) mode occurs at 
sb and the bifurcating branch connects with the secondary bifurcation a t  S3,1 on the 
( 3 , l )  branch. An interesting feature of note is that the primary and secondary 
branches show a tendency to bunch together at high Rayleigh numbers and they 
may even meet or cross. This leads to the possible existence of an isola a t  g5 = 0, or to 
the possibility of isola formation under tilting, with the upper limit point of the isola 
arising through an unfolding of a transcritical bifurcation formed by the crossing 
branches. The streamlines and isotherms are displayed in figure 5, where, for clarity, 
we have not reproduced in full the solution branches. These visualizations graphically 
confirm the statements concerning symmetry made in $2.2. It should be noted that 
the flows shown in figures 5 (a) ,  5 ( e )  and 5( f )  display the potential to distort into each 
other when an anticlockwise flow is superimposed ; similarly those shown in figures 
5 ( b )  and 5(c )  have this same feature. 

4.2. Lapwood convection : tilted case 

In the previous section we described the bifurcation structure as the Rayleigh 
number varied with both aspect ratio (unity) and tilt (zero) fixed. The effect of 
varying the aspect ratio of a horizontal cavity is fully discussed in Riley & Winters 
(1989). In this section we discuss the effect on the bifurcation structure of varying the 
angle of tilt, with aspect ratio fixed. 11.2 
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FICXTRE 5. Flow visualizations at Ra = 200 and h = 1. For clarity parts of the solution branches 
have been omitted. The insets show the streamlines (left) and the isotherms (right). The contour 
levels are equally spaced between the maximum and minimum values of the stream function and 
temperature. 

We reiterate at this point that, in contrast to aspect-ratio variations which are 
symmetry preserving, tilting the cavity removes the S, and S, symmetries, but 
preserves the S, S, symmetry. Thus any bifurcation which breaks this centro- 
symmetry will be structurally stable, but other bifurcations will generally be 
unfolded under tilt. An unfolding of a pitchfork bifurcation (Golubitsky & Schaeffer 
1985) is represented schematically in figure 6 (a) ,  where dashed lines now represent 
the unfolded solution branches and the open circle demarks a limit point. As the tilt 
varies the solution norm 0 traces a surface shown in figure 6(b ) .  The projection of the 
path of limit points onto the (#,Ra)-plane traces the curve shown, the classical cusp 
catastrophe. From figure 6(a)  it is clear that as the Rayleigh number increases a t  
fixed tilt a primary flow develops smoothly along the branch connected to the origin. 
However, at a critical value of the Rayleigh number two branches disconnected from 
the primary flow meet a t  a limit point. Generally one of these is stable and represents 
an anomalous form of convection. For small enough tilt the anomalous flow will be 
similar to the primary flow but with an opposite sense of rotation of the convective 
cells. From figure 6 ( b )  we see that this anomalous mode exists a t  all non-zero values 
of tilt within the cusp region in the (#, Ra)-plane bounded by the two paths of limit 
points. 

The above description of the unfolding applies to the primary one-cell bifurcation 
in a square cavity, for tilting the cavity removes the S, and S, symmetries that are 
broken at this bifurcation when # = 0. Naively one might expect other bifurcations 
to unfold under tilt in a similar way, resulting in a state diagram with one primary 
branch connected smoothly to the origin and many disconnected branches arising a t  
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FIGURE 6. Schematic diagram showing effect of tilt. (a) The unfolded bifurcation structure at h = 1 
for small tilt, and ( b )  cusp catastrophe showing the variation of some measure 0 of the solution with 
tilt. 

limit points. Then, as the angle of tilt increases, it could be conjectured (cf. 
Caltagirone & Bories 1985) that the limit points at which the disconnected branches 
arise move to increasingly larger values of the Rayleigh number, so that at a tilt near 
to 90" only the primary branch is to be found over a large range of Ra, in accord with 
the observed uniqueness of the convective flow for conditions of heating from the 
side. However, two factors modify this view. First, none of the primary bifurcations 
with Im-nl odd will be unfolded by tilting the cavity, since at these points centro- 
symmetry is broken for all q5. Second, we shall see that a pair of branches arising at  
a limit point can merge again at  a second limit point at  higher Rayleigh number to 
form a continuous closed loop, or isola. With increasing angle of tilt the isola 
'shrinks ' as the limit points approach one another until at  a critical angle of tilt they 
coalesce and the isola disappears. The critical tilt and Rayleigh number at  which this 
happens defines an isola formation point. 

Figure 7 shows the variation with the angle of tilt of the critical Rayleigh number 
for the appearance of the anomalous unicellular mode in a cavity of unit aspect ratio. 
This path of limit points, L,, which was computed on a 32 x 32 grid, is shown with an 
enlargement of the small-$ region to emphasize the cusp shape anticipated in figure 
6. An unexpected feature apparent from figure 7 is that the path of limit points itself 
has a turning-point (at I1). Thus for a given value of tilt, not too small, there are two 
limit points at different Rayleigh numbers and the anomalous branch has the form 
of an isola of centro-symmetric modes. This closed loop has a lower limit point at  L, 
and an upper one at 1,. Another feature is that the critical Rayleigh number of the 
lower limit point (L,) remains approximately constant as the tilt increases. Thus the 
threshold for the appearance of the anomalous uniceHular mode is roughly 
independent of q5, in contrast to our naive picture of anomalous modes moving to 
increasingly higher Rayleigh number for increasing tilt. Also shown in the figure is 
the variation with angle of tilt of the Rayleigh number at  which the primary two-cell 
flow bifurcates. This path P, behaves in a very similar way to the path of limit points 
L, just described: another isola exists, but this time the upper and lower points pz 
and P, are symmetry-breaking bifurcation points rather than limit points and the 
corresponding modes are asymmetric. We shall see that these bifurcation points 
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FIGURE 7. Computed variation with tilt of the critical Rayleigh number for the appearance of 
anomalous primary unicellular flow, represented as the path L,. The general view shows the paths 
of limit points L, and l,, pitchfork bifurcation points P, and pz, Hopf points H, and H,, and isola 
formation points I, and I,. The insets show a close-up of the cusp at small values of tilt, and the 
osculation of the paths of Hopf points and limit points. 

actually lie on the solution branches forming the isola of centro-symmetric modes. 
Note that there is a double-singular point a t  S ; this corresponds to when the lower 
bifurcation point passes through the limit point and onto the same solution branch 
as the upper bifurcation point. This process enables the inner isola to disappear a t  
I, through coalescence of the two bifurcation points. 

There are several ways to explain the existence/creation of isolas and we have not 
been able to resolve numerically which of these actually obtains. For example, the 
isolas may form a t  a C- coalesce point, or both the isolas may exist a t  zero tilt. For 
this latter case, figure 8 shows schematically a feasible state diagram at zero tilt and 
its evolution as the tilt angle increases, with particular emphasis on the behaviour at 
large Rayleigh number. As in figure 5 ,  for clarity we have not shown the full solution 
structure. Information regarding the eigenvalues of the Jacobian matrix is given 
along the various solution branches : a plus sign indicates that all the eigenvalues are 
positive and so the branch is stable. If negative eigenvalues exist then their number 
is indicated by the number of negative signs on the branch - these branches are 
unstable. One of the three-cell mixed-mode branches arising a t  the secondary 
bifurcation point S3,,  on the three-cell branch connects with the one-cell branch a t  
a limit point (1,) located a t  a large (possibly infinite) Rayleigh number to form one 
isola ; similarly two-cell mixed-mode branches connect a t  a pitchfork bifurcation (pJ 
from the one-cell branch to form the other isola. Before further discussion of these 
state diagrams, we need to return to our computed results. 

We know from previous studies of the untilted cavity (Kimura, Schubert & Straus 
1987 ; Aidun & Steen 1987) that there is a Hopf bifurcation (denoted by H,) along the 
unicellular solution branches a t  a Rayleigh number of 380. The computed variation 
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FIGURE 8. Schema showing a possible structure of the state diagram at large Rayleigh number 
and its evolution with tilt. 



322 D .  S. Riley and K .  H .  Winters 

with the angle of tilt of the Rayleigh number at which this Hopf bifurcation occurs 
is shown in figure 7 .  First, using the extended system (3.2), we located the Hopf 
bifurcation in the untilted cavity a t  H,, which is the Hopf point of lowest critical 
Rayleigh number. Then by continuation on this point we found that its path turns 
back a t  a critical value of 4, forming a turning point at C near the path of limit points 
1, associated with the termination of the centro-symmetric isola. The two paths 
osculate a t  the point 0, and the path of Hopf points returns towards the 4 = 0 axis 
a t  H,; flow visualization at zero tilt, see figure 9, reveals that the upper Hopf point 
H, lies on the three-cell mixed-mode branch. On comparing figure 9 ( b )  with 5 (f) ,  we 
see that the two corner eddies have become very weak, consistent with the notion 
that the secondary one/three-cell mixed mode mutates into the primary one-cell 
mode (cf. figure 8). The two Hopf bifurcations interact at C (figure 7 )  with two 
possible consequences for the periodic flows arising at these bifurcations : either they 
are annihilated (at an isola formation point) or disconnected branches of periodic 
flows are formed (at a coalescence point) -we do not yet have the computational 
techniques to resolve these different possibilities. We note that the path H, 0 marks 
a transition to oscillatory convection of the anomalous mode. 

In figure 8 we show our interpretation of the state diagrams implied by the 
computed paths of bifurcations. We see that, as the tilt increases, the Hopf 
bifurcation H, moves around the limit point l,, through the bifurcation point pz, and 
then interacts with HI. It is interesting to note that degree theory implies the 
existence of further Hopf bifurcations along the asymmetric two-cell mixed-mode 
branches. As the tilt increases, these unlabelled bifurcations move towards pz, and 
coalesce as H, passes through p,. 

We now give two specific examples of computed state diagrams a t  fixed tilt to 
illustrate the above points concerning isola formation and perfect bifurcation to (Zm, 
1)-mode convection. First, in figure 10(a) we show the state diagram, computed on 
an 8 x 8 grid, for a cavity of aspect ratio h = 1 tilted by 1'. As in the state diagram 
of figure 4 for the untilted case we plot the temperature a t  the mid-point of the left 
wall against Rayleigh number for each of the branches. For reasons of clarity the 
primary branch which is connected smoothly to the origin has been omitted, and 
again the limit points arising through the unfolding of pitchfork bifurcation points 
are denoted by open circles. Also, the branches from S3/, were not computed. The 
figure clearly shows the features discussed above ; the bifurcation to two-cell flow has 
not been unfolded by tilting and two pairs of branches appear to merge as the 
Rayleigh number increases. One pair of branches arises a t  the limit point L, on the 
unfolded one-cell branch and this pair forms the isola discussed in connection with 
figure 7 ;  from that figure we deduce that the upper limit point 1, a t  which the 
branches merge is a t  about Ra = 380. The other pair of branches arises at  the 
perturbed bifurcation point P, and forms a second isola which terminates at  p, (not 
labelled), also a t  about Ra = 380. It is interesting that the unfolding creates a mixed 
composition of primary and secondary modes on the branches shown. For example, 
considering the first isola which arises a t  the limit point L, on the perturbed one-cell 
branch, its lower portion connects the perturbed one-cell branch with the perturbed 
branches of the trivial, primary three-cell, and secondary one/three-cell mixed 
modes for increasing Rayleigh number. As noted above, the possibility of this 
continuous evolution of flows is evident from the flow visualizations of figure 5 for the 
untilted case. Figure 10(a) shows that a t  least five stable solutions exist a t  high 
Rayleigh number, in addition to the stable primary flow (not shown). Note that the 
three-cell branches are stabilized at lower Rayleigh number by the S3/, centro- 



Natural convection in a tilted two-dimensional porous cavity 323 

Stream function 

Stream function 

(4 

Base solution 

Real part of 
eigenvector 

Imaginary part 
of eigenvector 

(4 

Base solution 

Real part of 
eigenvector 

Imaginary part 
of eigenvector 

Temperature 

Temperature 

FIQIJRE 9. Streamlines and isotherms for the steady solution and the real and imaginary parts of 
the critical eigenvector at the Hopf bifurcation points (a) H, and (b) H, when the cavity is untilted. 
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FIQURE 10. (a) Unfolding of bifurcation structure at  1' tilt for h = 1 ; the labels indicate the 
associated branches at zero tilt, and stable/unstable branches are denoted by full/broken curves 
respectively. ( b )  Composite showing superimposed bifurcation structures at tilts of 0' (broken 
curves) and 1' (full curves). The measure used is the temperature (-0.5,O). 

symmetry-breaking bifurcations (not shown) which are not unfolded by tilting the 
cavity. The secondary bifurcation points Sz/l and S3,1 unfold giving rise to the limit 
points labelled L2/l and LSl1, respectively, while the primary bifurcation point P, 
unfolds and gives rise to the limit point L,. 

To illustrate more clearly the evolution of the solution structure with tilt we 
present in figure 10(b) an overlay of state diagrams for both the untilted and tilted 
cavities. For the tilted case we have omitted the primary branch connected smoothly 
to the origin, as in figure 10 (a) .  The overlay shows more clearly how the limit points 
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FIGURE 11. Unfolding of bifurcation structure a t  7.9' tilt for h = 1; the labels indicate the 
associated branches at zero tilt. A plus sign denotes that all the eigenvalues of the Jacobian matrix 
are positive. If negative eigenvalues exist then their number i s  indicated by the number of negative 
signs on the branch. Stable/unstable branches are denoted by fulllbroken curves respectively. The 
measure used is the temperature a t  ( -0 .5 ,O).  

a t  9 = 1 are generated from the symmetry-breaking bifurcation points at q5 = 0 
through the unfolding that results from tilting the cavity. 

As our second example, in figure 11 we show the computed state diagram for a 
cavity of aspect ratio h = 1 tilted by 7.9". In  this figure all bifurcation points are 
denoted by solid circles; other crossings are due to the measure we use. The 
bifurcation of the pair of two-cell branches at P, is still apparent and these merge at 
the bifurcation point p, on the centro-symmetric isola ; we note that the limit point 
L, on the outer isola is located at Ra = 67.22 which is approximately the same value 
as found for smaller tilt, a feature discussed in connection with figure 7. The stability 
of the solutions for each of the branches is indicated. In  the absence of the symmetry- 
breaking bifurcation points the one-cell branch would be stable between its upper 
and lower limit points. The effect of the upper symmetry-breaking bifurcation point 
is to reduce the range of Rayleigh numbers and tilt angles over which the anomalous 
solution is stable. Thus the domain over which the anomalous one-cell flow is stable 
is smaller than might be expected from figure 7 and is bounded by L, SI, pz OH, on 
that figure. 

As the angle of tilt increases from 7.9" we know from figure 7 that the upper and 
lower limit points, L, and l,, finally coalesce at g5 = 10.72'. In order for this to be 
possible, the second isola shown in figure 11 must first have disappeared through 
coalescence of the two symmetry-breaking bifurcation points, P, and p,. Clearly one 
of the symmetry-breaking bifurcation points must first pass on to  the same branch 
as the other for this coalescence to be possible, and so there will be a critical angle 
a t  which a symmetry-breaking bifurcation point will coincide with a limit point. This 
point of coincidence is a codimension- 1 singularity known as a double-singular point 
and is marked S on figure 7. 

In  the paper by Moya et at., results are included on transitions in tilted cavities 
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FIQURE 12. Schema showing possible evolution of the state diagram as the tilt increases, leaving 
the one-cell flow as the unique steady flow. The point Q in ( b )  is t -~ quartic point and C- in ( d )  is a 
C- coalescence point. 

between unicellular flows (the baroclinic motion) and flows which are essentially 
unicellular but which also exhibit secondary cells. We feel that this distinction is not 
physically significant : the appearance of secondary cells is simply a mutation in the 
flow pattern and does not arise a t  a bifurcation. We should stress that the extended- 
systems approach cannot predict such a phenomenological feature, but it could be 
identified by monitoring the evolution of the flow along the preferred solution 
branch. We also note that in their results for a cavity of aspect ratio 10, the 
bifurcation to multicellular flow appears a t  Rayleigh number N 55 rather than the 
theoretical value of 4n2. 

So far we have concentrated on a square cavity where a unicellular mode arises 
a t  the lowest bifurcation point. As the aspect ratio itself changes we expect that a 
series of paths similar to that in figure 7 will be traced out. Our experience in 
analysing the effects of varying the aspect ratio (Riley & Winters 1989) shows that 
it would be extremely dangerous to presume the bifurcation structure. However, 
symmetry arguments indicate that anomalous modes must inevitably arise : some a t  
limit points of disconnected branches, others a t  pitchfork bifurcation points. To 
illustrate one different structure that might arise, let us consider the situation when 
the aspect ratio just exceeds d2. For this moderate aspect ratio the leading primary 
mode is bicellular, but we expect that as the tilt increases the unicellular flow will be 
preferred owing to the smooth evolution of the unicellular branch from the origin. 
This would then ensure that we recover the expected uniqueness of the flow in a 
cavity of this aspect ratio with sidewall heating. One possible route to uniqueness, 
suggested by a related study of Impey, Riley & Winters (1990), is via a coalescence 
point ; the process is shown in figure 12. Note that the secondary bifurcation on the 
unfolded unicellular branch is pitchfork and the bifurcating solutions break centro- 
symmetry. The complexity of the route to uniqueness as # tends to 90" increases as 
the aspect ratio increases, and without extensive computation it would not be a 
simple matter to determine it. 
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In our study of the untilted case we demonstrated how secondary bifurcations are 
necessary for the exchanges of stability to take place as paths of bifurcation points 
cross with changing aspect ratio, The question which arises naturally is how do these 
exchanges take place in the tilted case, when a t  least some of the bifurcations are 
unfolded ? A mechanism for the exchange of stabilities of unfolded bifurcations was 
proposed by Benjamin (1978) and Schaeffer (1980). The exchange takes place 
through a complex process which introduces non-degenerate hysteresis and 
transcritical bifurcation points. The present problem is more complicated in that we 
have a Z ,  x Z ,  symmetry in which the perturbation (the angle of tilt) unfolds only 
some of the bifurcations. This process was also considered by Schaeffer (1980) and in 
future work we shall verify his model through explicit computation. 

5. Conclusions 
Techniques of bifurcation theory were used previously by Riley & Winters (1989) 

in a numerical study of Lapwood convection in a horizontal two-dimensional 
saturated porous cavity. Two particular aspects of the problem were focused upon : 
(i) the existence of multiple steady solutions and (ii) the influence of aspect ratio. 
The present work has extended that study to include the effect of tilt on the 
bifurcation structure for a cavity of fixed aspect ratio. 

At an aspect ratio of h = 1 we found that all the bifurcations, except those that 
break centro-symmetry, were unfolded under tilt, giving rise to a primary solution 
branch associated with a stable unicellular flow and to disconnected branches. As the 
tilt increased, most of the limit points a t  which these disconnected branches arise 
moved to higher Rayleigh number. Unexpectedly, the critical Rayleigh number of 
the most important limit point, the one which gives rise to an anomalous stable one- 
cell flow, was almost independent of $. Physically this means that the anomalous 
unicellular flow persists in a tilted cavity, and that alternative stable flows exist a t  
very moderate values of the Rayleigh number. The two branches arising a t  this limit 
point merged again a t  higher Rayleigh number to form an isola, thus determining an 
upper limit on the Rayleigh number for existence of the anomalous flow at a given 
angle of tilt. With increasing tilt the upper limit point approached the lower one until 
they coalesced a t  a critical angle of tilt q5c = 10.72', the maximum angle a t  which the 
anomalous one-cell flow can exist. This novel process is thus a further mechanism by 
which modes disappear to leave a unique unicellular flow in a square cavity with 
sidewall heating. 

A full stability map of the alternative stable unicellular flow is shown in figure 13. 
This map has been determined by solving the steady equations numerically, and by 
using the extended-systems approach to compute the boundaries between the flow 
domains. The determination of such a map by direct numerical solution of the time- 
dependent equations would, at best, be inefficient, and, a t  worst, unrealistic. By 
comparing this with figure 7 we see that, while the domain of existence for the 
anomalous one-cell flow is bounded by the path L, I, l,, the domain of stability of this 
flow is smaller ; it  is bounded by L, SI, p, OH, and is determined by other pitchfork 
and Hopf bifurcations. The maximum angle a t  which the anomalous unicellular flow 
is stable is 10.23' and occurs at I,. We also show on figure 13 the streamlines and 
isotherms that describe the anomalous unicellular flow a t  the isola formation point, 
the point of maximum tilt I, of figure 7. This visualization confirms the anomalous 
nature of the flow, which rotates in a sense opposite to that expected and flows 
downward near to the heated slope. 
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FIGURE 13. Stability map showing the domain over which the anomalous unicellular flow is stable. 
The path H,O marks a transition to anomalous oscillatory convection. The streamlines and 
isotherms at  the isola formation point I, close to I, are also displayed. 

Finally we should emphasize that, although we have discussed the effect of tilt in 
this study, the results apply qualitatively to any imperfection which removes the 
same symmetries. For example, Impey et al. (1990) discuss the effect of sidewall 
leakage of heat, and uncover analogous processes. 
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